Difference between revisions of "Using Bioconductor To Analyse Microarray Data"

From Bridges Lab Protocols
Jump to: navigation, search
m (Obtaining GEO Datasets)
m
Line 34: Line 34:
 
</pre>
 
</pre>
 
*see [[http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/r/geo/ Peter Cock's Page]] or [[http://www.bioconductor.org/packages/1.8/bioc/html/GEOquery.html GEOquery Documentation]] for more information.
 
*see [[http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/r/geo/ Peter Cock's Page]] or [[http://www.bioconductor.org/packages/1.8/bioc/html/GEOquery.html GEOquery Documentation]] for more information.
 +
 +
==Microarray Analysis==
 +
*set up design matrix.  Use a different integer for each treatment group.
 +
<pre>
 +
pData(eset)  #to see phenotype annotation data
 +
design <- model.matrix(~0+factor(c(1,1,1,1,2,2,2,2)),eset)  #for four replicates of each treatment group
 +
colnames(design) <- c("resistant","sensitive")  # give names to the treatment groups

Revision as of 00:22, 27 July 2009


Software Requirements

  • R, get from [CRAN]
  • Bioconductor, get from [Bioconductor]
  • Bioconductor packages. Install as needed:
    • Biobase
    • GEOquery - [1]
source("http://www.bioconductor.org/biocLite.R")
biocLite("PACKAGE")

Obtaining GEO Datasets

  • Open a R terminal
  • Load Biobase and GEOquery packages
libary(Biobase)
library(GEOquery)
  • Can load:
    • datasets - GDS
    • measurements - GSM
    • platforms - GPL
    • series - GSE
gds <- getGEO("GDS162")  #load GDS162 dataset
Meta(gds)  #show extracted meta data
table(gds)[1:10,]  #show first ten rows of dataset
eset <- GDS2eSet(gds)  #convert to expression set, by default obtains annotation (GPL) data and no log transformation.
pData(eset)  #phenotype data
sampleNames(eset)  #sample names (GSM)

Microarray Analysis

  • set up design matrix. Use a different integer for each treatment group.
pData(eset)  #to see phenotype annotation data
design <- model.matrix(~0+factor(c(1,1,1,1,2,2,2,2)),eset)  #for four replicates of each treatment group
colnames(design) <- c("resistant","sensitive")  # give names to the treatment groups